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Effects of viscosity on ship waves 
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The effect of viscosity on the trailing-wave system well downstream of a uni- 
formly moving surface disturbance is determined. Solutions are obtained by 
series expansions in inverse powers of a Reynolds number and coefficients in the 
viscous exponential decay-factor found. It is seen that the diverging wave pattern 
is much more heavily damped than the transverse waves. 

1. Introduction 
The waves set up by a body moving at uniform velocity over the free surface 

of a fluid have previously been described by inviscid theory (e.g. see Wehausen 
& Laitone 1960). The equations of motion and the boundary conditions are 
linearized and it is possible, therefore, to obtain the solution for a pressure 
distribution representing the body from the solution for a moving pressure 
point. The purpose of this paper is to incorporate viscosity into the solution 
of the latter problem, in particular as it affects the waves far from the pressure 
point. It is not intended to make any comments on the effect of applying a real 
fluid boundary condition at the body. 

Some methods of estimating the wave resistance of ships and other surface 
craft are based on measurements of the trailing wave profiles created by towing 
models. The scaling involved requires these estimates to be as accurate as 
possible. The results of the present work make it possible to compare the wave 
profiles including and excluding viscosity, and so to make the adjustments 
necessary in the resistance calculations which are based on the inviscid model. 

The effect of viscosity on ship waves has been investigated in detail for the 
two-dimensional case by Wu & Messick (1958). The method involves the use of 
Fourier transforms and solutions are found in the form of expansions close to and 
far from the body at low and high Reynolds numbers. The extension to the three- 
dimensional case requires double Fourier integrals. The expansions of the solu- 
tions in the various limiting cases become complicated because of the algebraic 
nature of the functions and also because of the estimation of the accuracy of the 
solution obtained. For these reasons only the case of wave profiles at large 
distances downstream for high Reynolds numbers is investigated. This is the 
case of particular interest for the applications mentioned above. 

The three-dimensional wave systems set up by a moving pressure point 
in the inviscid case were investigated by Lord Kelvin (Sir W. Thomson 1891). 
Recent improvements of the solution are due to Peters (1949) and Ursell(l960). 
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Crapper (1964) has shown how the results for the wave system well downstream 
can be easily obtained using the methods for the asymptotic expansion of Fourier 
integrals described by Lighthill (1960). The present paper continues with this 
latter scheme for linearized equations which include the viscous terms. Formal 
expansions in inverse powers of a Reynolds number are obtained, together with 
estimates of error terms. These expansions have a different form inside and on the 
critical lines (where the radial decay factor changes). However, a viscous decay 
factor is obtained which is valid over the transverse and diverging wave systems 
up to and including the critical lines. 

2. Solution as a Fourier integral 
Cartesian co-ordinates are taken fixed in the body with the fluid at large dis- 

tances having velocity U in the x-direction. The z-direction is vertically upwards. 
The linearized (OsBen) equations of motion are 

v.q = 0, (1)  

(2) 

where U i + q  = (U+u,v ,w)  (3) 

(4) 

where curl q, = 0, div qz = 0, ( 5 )  

U-+-V(p+pgz)-vV~q acl 1 = 0, 
ax P 

is the total velocity, p is the density and v the kinematic viscosity. These equations 
allow a splitting of the form = q, + qz, 

such that 

It follows from (5) that q, = Vq5 with Vzq5 = 0. (8) 
84 p/p = - u--g2. 
ax 

Also, from (6) 

The boundary conditions are 

and 

(9) 

These boundary conditions are to be applied on z = 0, where 

z = T(X,Y) (14) 

is the equation of the free surface. Surface tension has been neglected. In  (lo), 
(11) and (12) the functions G, H ,  K represent the stress distribution acting on 
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the free surface, G being the applied normal stress, and H ,  K the x and y com- 
ponents of the shearing stress. In  what follows both H and K will be taken 
to be zero, but results for non-vanishing shearing stresses can be obtained 
without difficulty. 

Denoting the Fourier transform with respect to x and y off (x, y, z )  byf(a, /3, z ) ,  
equations ( 7 )  and (8) yield 

with similar expressions to (16 )  for 5, 6,. The square roots in (15) ,  (16 )  are re- 
quired to have positive real parts for a, /3 real, to ensure the vanishing of the 
perturbation solution as z -+ - co. Substituting (15 ) ,  (16 )  and the expressions 
for v2, w, into the boundary conditions (10)-(13),  together with ( 5 ) ,  allows the 
constants A ,  B, etc., to be found in terms of G ,  H ,  K .  The result for f j  in the case 
H = K = Ois 

B q = - { g -  (a2+/32)~[Ua(a2+/32)-t-2vi(a2+/32)t]2 
P 

- 4v2(a2+P2) (a2+/32+iaU/v)&]-1 (17 )  

and the height of the free surface is obtained as the inverse Fourier transform 
of (17 ) .  

The case of a normal stress of delta-function form a t  the origin is taken here. 
This gives 4 = Go, const. The solution for a distribution of pressure can be 
obtained by further integration. It is convenient to introduce non-dimensional 
variables z = 211, y = y/l, E = al, p = p1, 
where I = u y g .  

A Reynolds number R = U l / v  = U3/vg 

is defined. The wave profile z = v(x,y) is now given by the double Fourier 
integral 

7 = (4n2l2pg)-lGOI = (4n212pg) -1Go~m -w Sm - w  ei(aZ+I@ D-1 dad/3, (21)  

where 

The expansion of (21 )  for large (x2 + y2)i and for large R is evaluated in the next 
section. Actually the expansions are made for large x and it requires additional 
analysis to make the results valid for large (x2 + y2)*. Since only regions where 
y < ix 4 2  are of interest, these details will be neglected. 

3. Expansion of the solution 
Methods for the asymptotic expansion of Fourier integrals similar to (21) 

have been described by Lighthill. Ship wave profiles neglecting viscosity but 
including surface tension have been obtained by Crapper using these methods. 
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In  essence, the method involves calculating the a-integration by residues and the 
P-integration by stationary phase. The poles of the integrand give a contribution 
representing the steady wave-form well downstream. The effect of the inclusion 
of viscosity is to move the poles off the real axis; viscous damping is thereby 
obtained. Also the stationary-phase method used for stationary points on the 
real axis has to be replaced by a steepest-descents analysis. It is seen that the 
equation yielding the poles cannot be solved exactly and only approximate 
locations of the poles can be obtained. The analysis is carried through to yield 
an approximate solution in terms of an expansion at large distances and a t  large 
Reynolds numbers. It becomes important to estimate the accuracy of the ap- 
proximation and to determine its region of validity. 

Contributions to the a-integration in ( 2 1 )  arise from the singularities of D. 
The function D(a) has branch points at 

a = +ilPI and at a = #i[- R +  (R2+4p2)*] ,  (23) 

and the branch cuts are taken from a = ilpl t o  a = &$-(R2+4P2))-R] on the 
positive Im (a) axis, and from a = - ilpl to a = - &i[(R2 + 4P2)!+ R] on the nega- 
tive Im (a) axis. The analytic nature of D is investigated further by putting 

a = scos$, P = ssin$, (24 )  

( 2 5 )  giving D = 1 - s(cos $ - 2 i ~ / R ) ~  - 4s2R-2 (s2 + isR cos $)4. 

It is noted that D has the same analytic form as its two-dimensional counterpart 
which was dealt with by Wu. The techniques used there can be repeated to show 
that D has two simple zeros. For large R these zeros are found at 

and 

= at = A+iB/R+O(R-6) 

a = a$ = -A+iB/R+O(R-g),  

(27) 

B = 4A6(2A2- l)-l .  ( 2 8 )  

1 
A = -{(1+(1+4P2)*}t, 

4 2  
where 

The inviscid case gives zeros at a = f A .  The location of the zeros a:, a: in the 
upper half-plane insures that there is no wave contribution for x < 0. (The real- 
axis integration is replaced by a semi-circular contour of large radius in the lower 
half-plane.) The inviscid case requires other arguments to achieve this result. 

For x > 0, the path of the a-integration in ( 2 1 )  is replaced by a large semi- 
circular contour in the upper half a-plane and it is necessary to consider the con- 
tributions from the singularities of D.  The branch point singularities contribute 
integrals taken along the branch cuts in the upper half a-plane indicated by ( 2 3 ) .  
For the purposes of estimating the order of magnitude of these integrals. their 
limiting values as R -+ co may be taken in the first approximation. Integrals of 
the form 

J r m e i B y  (1;" eias[l- a(a2 +/P)-']-'da) dp (29) 

are then apparent and it is not difficult to show that they are of order r3 (see 
Ursell, 1960). 



Effect of viscosity on. ship waves 47.5 

The zeros of D contribute the dominant terms in the expansion a t  large dis- 
tances. For the moment, we take the first two terms on the right-hand side of 
(26 ) ,  that is a1 = A + iB/R to give the location of the zero. The approximations 
inherent in this procedure are discussed later. Also, only the contribution from the 
zero at a = a1 is considered up to the point at which a physical result is written 
down. This zero gives a contribution 

in whichf(@) = i{psin 8+ cos 8(A(/3) + iB(P)/R)} and 

are to be substituted. 

&plane are determined from the equation 

x = rcos.8, y = rsin8, (31) 

A steepest-descents approximation for large r is now calculated. The cols in the 

sin 8 + (A’ + iB’/R) cos 8 = 0, (32) 

where accents denote differentiation with respect to /3. In  the inviscid limit, 

(33) 
(32) reduces to A’ = - tan8. 

This may be interpreted geometrically by stating that (33) is satisfied by points 

(34) 
on the curve 

at which the normal to the curve is parallel to the vector r = ( r  COB 8, r sin 8). 
As a result, geometrical information about the wave pattern can be obtained from 
the nature of the curves given by (34) (e.g. see’lighthill and Crapper). Solutions 
of (33) are possible only for 181 < 8,, where tan 8, = & 42. The critical points, 
denoted by the subscript c, are the inflexion points, p: = 9, where A”(/3,) = 0. 
Equation (33) has two solutions for each 8, giving rise to two wave systems: the 
transverse system for p2 < Q and the diverging system for p2 > 2. Different 
radial decay laws are in force for the wave systems in regions close to and away 
from the lines 8 = 2 8,. This can be appreciated by considering the steepest- 
descents calculation which will involve A”(/3). A method which gives uniformly 
valid results over these regions is described by Ursell. 

The effects of viscosity may be determined by solving (32) in terms of a series 
in inverse powers of R. The cases A” = 0 and A” $. 0 become separate calculations 
in a straightforward expansion procedure. However, these calculations may be 
combined by using Ursell’s method and the extension of this method for a steep- 
est-descents calculation for (30) is contained in what follows. The results for 
8 = f 8, and 8 not near 2 8, are readily deduced and will be quoted. Ursell’s 
notation will be used. 

a = A(P),  

A change of variable given by 

is introduced by whichf(P) can be written 
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where 

The function g(u) is now replaced by a cubic polynomial. That is, the substitution 

g ( u )  = - ~ ~ 3 + p ( e ,  R) v - v(o, R) (37) 

is made to enable (30) to be computed in terms of the Airy function. For (37) 
to represent a regular transformation, it is required that d u / d v  + 0. However, 
dg /du  is to vanish at the col locations for the steepest-descents calculation and it 
becomes necessary to match the zeros of dg /du  with v = f ,d. 

There are two solutions to (33) for 181 < 8,. Denote solutions to (33) by 
/3of and &. Let the corresponding zeros of dg,/du be denoted by u,f, ut and the 
zeros of d g / d u  by u:, u;. That is, dg /du  is O(R-8) at u = u?. The matching of the 
zeros gives v = - 4{90(.of 1 + go(u0 )I - 4k71C4 1 + 91(%- ))/R 

2. 3P % = I  2{90(uOf) -go(ula)+ 4{91(uO') -g,(ui))/R 

(38) 

= Y o  - 4{91(uO+) + Sl(uo)l/R 
and 

= 34.8 + B{9l(.Of) - 91(ud}/R, 
where uo, vo are functions evaluated by Ursell. Equations (38) are obtained by 
expanding go(ul+), etc., and using the result that (dgo/du)  = 0 at u = u$. Hence, 
p and v can be obtained as series representations and (38) display the first two 
terms. 

The transformation (37) allows 1, to be expressed in terms of Airy functions as 

Il - 47r2 exp ( - irv) {ir-apoA,( - rfp) - r-fpo&( - r+p)>, (39) 

where po(8),  po(B) are evaluated by Ursell. The expressions (38) for p, v remain to 
be substituted in (39) and the asymptotic form found from the properties of the 
Airy function. The main effect of viscosity is now evident in (39). The viscous- 
dependent terms in the expansions (38) for p and v have imaginary argument 
and (39) gives rise to an exponential viscous decay factor. For example, in 
regions away from the critical lines, the asymptotic form is obtained by expanding 
the Airy functions for large values of Ir+p/ and, retaining the viscous terms only 
in the exponential factors, this yields 

11 2 ~ ~ ~ - ~ ~ u , ~ [ @ o + ~ u g ~ o ) e x P ~ ~ ~ ~ ~ ~ - ~ O ~ + g l ( u , f ) ~ / R - B ~ } +  @'o-pugp.o) 
x e x p i { - ~ p g r - v , r + g , ( u , - ) r / R + a ~ } ] .  (40) 

The first and second terms in braces in (40) give the transverse and diverging 
wave contributions which are damped by factors 

exp (isl(uo+ 1 T/R) % exp (ig,(u, ) T/R) , 
respectively. The viscous decay factor is thus exp ( - B, COB &/R) and the nature 
of its dependence on 8 is investigated in $4. 

It is desirable to estimate the errors introduced by the series development 
(38) in the asymptotic evaluation (39). In  this respect, the asymptotic calcula- 
tions applied directly to (30) enable the errors to be estimated more easily than 
from (39). This procedure will be carried out for the cases 0 not near 0, and 
e =  58,. 
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Case 1: 8 not near -t. 8, 
The first approximation to the solution of (32) is given by 

P = /31= Po-iBh{A;R)-’, (41) 
where B,!, = B’(P,), etc. Since the regions near the critical points are being 
avoided, A6 is not close to a zero and (41) is a valid expansion. At the stationary 
points j3 = /3,, the expansion up to the term in R-l forf” is given by 

f” = i cos 8{A,” + iR-l(B,” - A{B,!,/A[)], 
or f“ = Cecr, 

where y = 7r - +7r sgn A,” + R-I(B,!,/Ag)’, 

c = IA;; cos 81 (1 + o(R--~)).  
(42) 

The asymptotic approximation of Il for large r can now be written as 

Il = 2niZ(2n/Cr)*exp {rf(P1) + i (&r  - 47)) [(a-D/aa),l(,&l + O( 1/r), (43) 

where the summation is over the roots PI. This expansion for I, may be obtained 
from (39) using asymptotic forms for the Airy functions for large [rf,u[. 

The approximations inherent in obtaining the result given by (43) will now be 
discussed. Let I be the integral corresponding to (30) using a,* instead of a, 
to give the location of the zeros. Consider substitutions t = a;_*@) or al(/3) to be 
made in the integrals I ,  11, respectively. Solutions for P of the form 

(44) P = Po(t) +Pl(t)IR + Pz(t)/R$ + - * * 

will result and will differ only from the third term onwards depending on the 
choice a: or a,. It can be seen then that 

( I -  11)/1 = O(R-8) (45) 
and the use of a1 in place of a: in (30) introduces error terms in (44) of O(r-4 R-*). 

The asymptotic representation (43) is a formal expansion for large R of the 
exact asymptotic value of (30). That is, i t  is assumed that the position of the 
cols can be found exactly. Let the exact col position corresponding to PI be 
denoted byPE. The exact asymptotic expansion of (30) is obtained by substituting 
pE for PI in (43). The dominant error term appears in the exponential which can 
be written 

Since (P, -Pl) and f’&) are both O(R-g), the error terms in (44) are O(r11R-3). 

tributions similar to (43) for both zeros a, and a2. This gives 

(46) exP{rf(PE)) = exp{rf((Pl)+rf’(Pl) (PE-pl)+ 

The asymptotic expansion for the wave profile (21) is found by adding con- 

exp ( - rR-l B, cos 8) 

where h(P) = aZ +By + in-sgn A,” - +R-1 (BJA,”)’ and the summation is taken 
over points where the normal to a = A (P) for a > 0 is parallel to r .  The expression 
(47) has error terms of order r-l, r4R-3 and r-aR-4. 
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Of interest is the exponential decay in (47 )  since this is the major effect of 
viscosity on the inviscid wave profiles. The leading term in (47 )  is 

2n 9 7 N -c, C { -1 cos 8 exp ( - TR-~B,  cos 0)  sin (ax + /3g + in sgn K )  
nPg12 rlKl 

(48)  
where K = [A: cos S ]  is the curvature of a = A(/3). The terms omitting the 
exponential term in (48 )  constitute the inviscid solution. The result (48 )  would 
be obtained from ( 2 1 )  under the assumption that the stationary points for the 
inviscid solution do not change in the fist approximation. 

Case 2 :  8 = +6, 
At the critical points, where A”(/3,) = 0, the expansion (41 )  breaks down and the 
expansion in this case has the fist  two terms 

p = P I =  Po + Sl R-4, 

With this choice of Sl,f‘(pl) is O(R-Q) andf”(P1) is O(R-a). Theintegral I -  has now 
the form 

where 8, = ( - 2iBJA34. (49 )  

where f (pl )  = i[po sin e + {A,  + ~ B , / R  + A : s ; / ~ R ~  + . . .> cos-e~, 
fypl) = i cos e{Ag + A:s, /R~ + . . .}. (51) 

The integral in (50) can now be evaluated by steepest descents. This will not 
be written down explicitly as the calculation is similar to case 1 .  The asymptotic 
evaluation of (50), retaining only the viscous effects in the exponential term, gives 

I?(*) r-4 sin ( i r  4 3 )  exp ( - 9r/R 4 2 )  7 N -~ Go 3% 
npgP 2 J 2  

as the wave height along 0 = & 8,. The error terms in (52 )  are of order r-8 and 
rjR-*. The result (52 )  corresponds to an expansion of (39) for small (0-8,). 
The viscous decay factor is obtained from the exp ( - irv) term since on 0 = ? e,, 
u$ = ug, and 

exp [ir{g,(u$) + gl(uo)}/2R] = exp { - rR-IB(pC) cos eC}. (53) 

4. The viscous decay rate 
The exponential factor exp ( - rR-lB, cos 0)  has been found as the major 

effect of the viscosity on the trailing-wave system. The viscous decay rate for 
8 = 0 agrees with the two-dimensional result. An attenuation length L, defined 

gives a decay factor e-1 for each increase L in distance downstream. 
The variation of L with 8 on the transverse and diverging waves is found by 

obtaining as a function of 6 from (33). This is most easily done through (27 ) ,  
giving 

and then using ( 2 8 )  for Bo(8). The positive sign in (55 )  applies to the diverging 
waves, and the negative sign applies to the transverse waves. The factor 

by L = RZ(B, cos eI-1, (54 )  

A;  = &{4 + Cot2 e Cot2 6( 1 - 8 tan2 ep} (55)  
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[B, cos 01-1 in L is found to vary only slightly from the value t over most of the 
transverse wave. However, near the critical angle and on the diverging waves, 
there is considerably more damping. This is shown in table 1 where a number of 
values of [B, cos 01-1 are given for 0 close to Oc. 

[B,, cos 81-1 

8 Transverse Diverging 
12" 0-241 0.015 
14' 0-236 0.029 
16" 0.227 0.051 
18" 0.209 0.087 
19O 0- 185 0.119 
19.5' 0.157 0.157 

TABLE 1 

5.  Concluding remarks 
The expansion scheme outlined in $ 3  yields expressions for the wave height 

valid for large Reynolds number and for large distance downstream. The 
expansion is not uniformly valid for large r. That is, the orders of magnitude of r 
and R are to be such that the errors quoted remain small. It is seen that the 
exponential decay rate is the main effect of viscosity and the damping of the 
transverse wave system varies little with angle from a two-dimensional value, 
whereas the diverging system is more heavily damped. In  fact, the diverging 
waves in the region near 8 = 0 are severely damped by viscous forces and the 
result of infinite wave height associated with a point distribution of pressure in 
the inviscid case is not achieved. 

It must be pointed out that the analysis deals with only part of the problem 
of the effect of viscosity on ship waves. Problems requiring further study in- 
clude the effect of the boundary layer on wave making and the interaction of 
waves with a wake region. The results obtained here establish the relative effects 
of radial and viscous attenuation for ship waves and may be of use in predicting 
the wave height for an inviscid model from measurements made in an experi- 
ment. Such measurements are used in making wave-drag calculations. 
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